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Abstract. Extended lattice-lattice scaling (that is, universality of scaling corrections) is 
investigated for the two- and three-dimensional king models. It is shown to break down for 
non-Archimedean lattices in two dimensions, and for all lattices in three dimensions. In the 
course of the investigation several new higher order amplitudes for the two- and three- 
dimensional king models are obtained. These include an exact evaluation of the amplitude 
of the second most singular term of the susceptibility of the Kagom6 lattice, for which we 
find C; = 0.086936625, Cy = -0.0023063996. 

1. Introduction 

This paper continues and refines the investigation commenced in two earlier papers 
(Guttmann 1975a, b, to be referred to as I and I1 respectively), devoted to a study of the 
nearest-neighbour spin-$ Ising model susceptibility amplitudes in two and three dimen- 
sions. 

Lattice-lattice scaling, which relates the amplitudes of the most singular part of the 
free energy and its field and temperature derivatives on one lattice to the corresponding 
quantity on another lattice, was first introduced by Betts et a1 (1971). Its validity in an 
extended form, when applied to the amplitudes of the second most singular term was 
tacitly assumed by Guttmann (1974) for a number of two-dimensional Ising lattices. 
Ritchie and Betts (1975) studied explicitly formulated extended lattice-lattice scaling 
and showed that while it held for the square, triangular and honeycomb lattices, it did 
not hold for the KagomC lattice. 

For the Kagom6 lattice we can write the zero-field isothermal susceptibility as 

+Dl +higher order terms T>Tc 

c;(T,/T - I)-’/~+c;(T,/T - 1r314 
kTXo(T) - 
m 2  

+ DU + higher order terms T < T,. 
We calculate C: and Cy exactly, incidentally confirming the breakdown of lattice- 
lattice scaling for this lattice, and also evaluate D z  and DO approximately. 

In a related manner we have estimated Do+ for the honeycomb lattice, which, in 
conjunction with our estimate of DO in I, supports a conjecture of Barouch et a1 (1973) 
that Do+ = DO. This conjecture is also discussed in the following section. 

In 0 3 a further amplitude for the susceptibility of the triangular lattice is obtained. 
In § 4 we extend the work of I1 on three-dimensional lattices. Our results show that 

extended lattice-lattice scaling breaks down for all three-dimensional lattices. 
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2. The Kagome lattice 

As shown by Ritchie and Betts (1975) extended lattice-lattice scaling breaks down for 
the KagomC lattice. It is therefore not possible to obtain the second most singular 
susceptibility amplitude for this lattice from the extended lattice-lattice scaling argu- 
ment and the known amplitudes for the square, triangular and honeycomb lattices. 
However this amplitude can be estimated from the following expression which relates 
the reduced susceptibility of the KagomC lattice to that of the honeycomb lattice: 

The subscripts K and h refer to the KagomC and honeycomb lattices, Q = J/kTK and 
K = J/kTh are the dimensionless temperature variables for the two lattices and Eh(K) is 
the nearest-neighbour spin correlation function for the honeycomb lattice. This 
expression was first given in a slightly less accessible form by Sykes and Zucker (1961) 
and was more recently given, with several minor errors, by Syozi (1972). 

From this expression, we obtain for the KagomC lattice, 

CT = 0.086936625 Cg = 1.0181422309 

C, = 0-0270109734 Cy = -0.0023063996, 

Extended lattice-lattice scaling gives the same values for C," but gives values for C: 
which are arithmetically 1.3984'/0 larger. It is noteworthy that C:/C; = 
-37.693652 = -C:/Ci for the KagomC lattice, as well as for the square, triangular 
and honeycomb lattices (Guttmann 1974). 

From (2.1) we can also obtain an expression for D: for the Kagomt lattice (D:K) in 
terms of the corresponding quantity (D&) for the honeycomb lattice. Thus we find 

since €,.,(Kc) = 4&/9 (Syozi 1972). 
In I we estimated D:h 5 -0.24. As we now show, it is possible to improve this 

estimate. The following expression connecting the susceptibilities on the triangular and 
honeycomb lattices: 

xt(w) = ;kh(U)+Xh(-U )) (2.3) 

was first given by Fisher (1959), where w = tanh(J/kTt) is the triangular lattice 

immediately obtain 
temperature variable and U = tanh(J/kTh) = [ w ( l  + w ) / ( l  + w  3 )] 1/2 . From (2.3) we 

(2.4) D' O t  -1 - 2(D;h+Xh(-U)) 

where Xh(-Uc) = 0,1224 * 0.0003 (Sykes eta1 1972) and D& = -0.0496 i 0.002 (see I), 
so that D&,=-0.222*0*004. From this result and (2.2) we obtain DgK= 
-0.131 *0*006. 

In I we investigated a conjecture of Barouch et a1 (1973) that Do+ =DO for the 
two-dimensional Ising model on a square lattice, and found it well confirmed numeri- 
cally both for the square and triangular lattices. We also obtained Doh= 0.24-0.03 10.02 
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which, when combined with our present estimate = -0,222 f 0.004 also supports 
DO+ = 0, for the honeycomb lattice. Actually the truth of this conjecture is hardly 
surprising, since we can write the susceptibility as follows: 

x(T)=xs(T)+xr(T) (2.5) 

where xs(T) is the singular part of the susceptibility and diverges as T+ T,, while x,(T) 
is the regular part of the susceptibility and limT-.T,xr(T) exists. The conjecture 
D i  =DO is then simply a statement that x,(T) is continuous at T = T,. That is, in 
addition to the existence of limT.+Tcxr(T), we require that the limit is equal to x,(T,). 
x(T)  would have to be functionally pathological for this to be false, so it is entirely 
reasonable to assume the truth of the conjecture Di=DO, so we thereby obtain 

Notice however that (2.5) and associated statements are by no means trivial. For 
example it may be tempting to write xS(T)- (1 - T , / T ) - 7 / 4 ~ ( T )  where q!J is assumed 
regular at T =  T,. Such a simple functional form cannot be the case for both the 
honeycomb and the triangular lattices, as is clear from the calculation in the next 
section. 

D,=-0*131*0*006. 

3. The triangular lattice 

In I we wrote the triangular lattice high-temperature susceptibility as 

+ O[( 1 - T c / T ) s / 4 ]  +Do: + D21- T,/T) + 0[(1- Tc/T)21. (3.1) 

From (2.3) however, it is clear that additional terms may be present, since as 
w -* w,, v + vc and 

while 
Xh(-J/kT)-FO,h(l- TJT)In(l-  Tc/T)+Fl ,h+'  * ' > (3.2) 

xh(J/kT)-C:,h(l-Tc/T)-7'4+C;h(l-Tc/T)-3'4+D~,h+ * ' ' . (3.3) 

This would imply the addition of a term of the form 

F0A1 - T,/ T )  ln(1 - Tc/  T )  (3.4) 

to (3.1). Since F O , h  = 0.182 f 0.001 (Sykes eta1 1972), it follows after some algebra that 
F,,,, = 0-0527* 0.003. Alternatively, (3.3) may contain a term -FO,h(  1 - T J T )  ln(1- 
T,/T) which would imply that FO,, in (3.4) is precisely zero. It follows then that 
xS(T) = (1 - T, /T)-7 /44(T)  where q!J(T) is regular at T = T, cannot be true for both the 
triangular and the honeycomb lattices. 

4. Three-dimensional lattices 

It is known that extended lattice-lattice scaling breaks down for the two-dimensional 
KagomC lattice and for the three-dimensional tetrahedral lattice (Oitmaa and Ho-Ting- 
Hun 1976). Both these lattices are non-Archimedean. That is, the tesselations incident 
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upon each lattice site are not all identical. This is in contrast to the square, triangular 
and honeycomb lattices in two dimensions and to the three standard cubic lattices in 
three dimensions. An equivalent statement is that the coordination number of the dual 
lattice is not constant. 

Since extended lattice-lattice scaling does hold for Archimedean two-dimensional 
lattices, this observation suggests that it is worthwhile to investigate extended lattice- 
lattice scaling for Archimedean three-dimensional lattices. An attempt in this direction 
was made in 11, where the high-temperature susceptibility series were investigated. 
Unfortunately, given the available series coefficients, it was only possible to estimate C: 
for the face-centred cubic (FCC) lattice. It is however possible to estimate the next most 
singular term for the spontaneous magnetisation for all the standard three-dimensional 
lattices. We tentatively write the spontaneous magnetisation as 

I ~ ( T ) . = B ~ ( T c / T - 1 ) ~ + B l ( T c / T - 1 ) " ~ + .  , , (4.1) 
where p =&, with Bo and T, lattice dependent and given in 11. Next, we form the 
series 

f ( U ) =  lo(U)-Do(l- U/UC)' -Di(l- U/UC) '+ ' ,  (4.2) 

where U = exp(-4J/kT) is the usual low-temperature expansion variable, and Do is 
simply related to Bo. We found that Pad6 approximants to the logarithmic derivative of 
f ( u )  had well defined poles at U = uC, with residues within a few per cent of 1& This 
confirms the functional form assumed in (4.1) and (4.2). That is, the correction to 
scaling exponent of the spontaneous magnetisation is one, as tentatively assumed in 
writing (4.l j .  To conserve space these approximants are not shown. In order to 
estimate D I ,  and hence B1, we next formed Pad6 approximants to 

l l l + P  
( U c -  U)[-f(U)l- Iu=uc. 

The approximants so obtained are shown for the simple cubic lattice in table 1. From 

Table 1. Pad6 approximants to (uc- U )[--f(~)]-'~'*' for the simple cubic lattice where f(u) 
is given by (4.2). 

4 0.34713 0.34440 0.34249 
5 0,33414 0.34378 0.34720 
6 0.3448 1 0.34489 0,34507 
7 0.34475 0,345 13 0.34510 
8 0.34509 0,345 11 0.34510 
9 0.345 11 0.34513 0.34507 

10 0.34506 0,34524 

this table we estimate the limit to be 0~3450rt0.0005, from which follows B1 = 
-1.296 * 0.003. Similarly well converged Pad6 tables were obtained for the same 
quantity for the diamond, BCC and FCC lattices. The results are summarised below: 

B1 = -1-77OrtO.014 (diamond) B1= -1.296 * 0.003 (SC) 

B I  = -1.040*0.004 (BCC) B1 = -0.9784*0.0013 (FCC). 
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The quoted errors include both confidence limits on the extrapolated Pad6 tables and 
the uncertainty in the values of uc and Bo quoted in 11. As discussed in 11, the ratio 
(Bo/B1)  for lattice X divided by (Bo/Bl)for the FCC lattice should equal gpcc/gx, where 
gx is the temperature scaling parameter for lattice X. Values of gx are given in 11. The 
values of this quotient and of gpcc/gx are shown in table 2. It can be seen that the 
figures disagree by 10% for the diamond lattice, by 5% for the sc lattice and by 0.6% 
for the BCC lattice. 

Table 2. Numerical estimates of observed spontaneous magnetisation amplitude ratios 
compared to ratios predicted by extended lattice-lattice scaling. 

Diamond -0.943 i0.008 0,621 *0.006 1.448i0.008 0.691 i0 .004  
sc - 1 ~ 2 1 1 i 0 ~ 0 0 3  0~797*0.004 1.191 i0 .004 0.840i0.003 
BCC -1.448*0*006 0.953i0.006 1.043ir0.005 0.959i0*005 
FCC -1.519i0.003 1 1 1 

Clearly then, the extended lattice-lattice scaling does not hold even for the 
Archimedean lattices in  three dimensions, unlike the situation in two dimensions. Note 
however that the breakdown is only a few per cent, as anticipated in 11. Thus extended 
lattice-lattice scaling is still likely to form a useful predictive tool for Archimedean 
lattices in three dimensions, with the proviso that estimates so obtained are likely to be 
in error by a few per cent. In many instances, for example the second most singular term 
of the high-temperature susceptibility series C:, this is still considerably more accurate 
than any estimates obtainable by direct series analysis. 

In order to investigate extended lattice-lattice scaling further, it would be highly 
desirable to have extended high-temperature susceptibility series available, so that 
better direct estimates of C: could be made. 

For the non-Archimedean tetrahedral lattice studied by Oitmaa and Ho-Ting-Hun 
(1976) the breakdown in extended lattice-lattice scaling is much more substantial. 

5. Conclusions 

A number of new amplitudes have been obtained for the two- and three-dimensional 
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